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the time Q == H"?. For the case Y-- 11NJlJ the graph of the asymptotic representation (2.5) is 
shown by dashes for rl< RL2, and (2.7) for I‘] > ]?'iZ As already mentioned, the asymptotic form 
(2.5) turns out to be valid even for t'1 : H"*. 

For a further increase in the velocity u1 and large values of the parameter % the solution 
of the problem approaches the stationary solution 1~~ which, if only the beam deflections are 
kept in mind, does not exhibit resonance effects when the velocity passes through the value 
S-'/l. Consequently, the numerical data reflecting the passage through the velocity S-': are 
not presented. 

In conclusion, we note that the method elucidated above can be used even to study the 
stresses in a beam. Thus, in place of the function u in (1.2) it is sufficient to apply the 
expression for the bending moments under the action of an instantaneous impulse on a beam 
/5, 7/ when considering the bending moments. An increase in the bending moments as the 
parameter Y increases will occur on passing through all three critical velocities I.~*,K"P,s-"~. 
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SOLITARY LONGITUDINAL WAVES IN AN INHOMOGENEOUS NON-LINEARLY ELASTIC ROD* 

A.M. SAMSONOV and E.V. SOKURINSKAYA 

The solution of the Cauchy problem for the equation of longitudinal 
displacement wave propgation in an infinitely long elastic rod is con- 
sidered taking the physical and geometric non-linearities of the material, 
the wave dispersion, and inhomogeneinies of the second and third order 
elastic moduli into account. A slow change in the elastic moduli in the 
wave propagation direction results in a perturbation of the equation of 
the problem solvable by the method of multiscale decomposition. It is 
shown that for certain initial data the solution of the problem is a 
soliton in the longitudinal displacement velocity. The soliton parameters 
are detiermined by the elastic moduli of the material, and its propagation 
over the rod is accompanied by a low-amplitude long-wave (plateau). 
Relations are derived between the elastic moduli for which the soliton 
amplitude remains constant or the plateau is not formed behind the main 
impulse. Under other initial conditions the Cauchy problem is solved 
numerically, andshaping of the solitary waves is investigated. Soliton 
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properties are detected in solutions of the solitary-wave type for the 
longitudinal velocity of displacement in the presence of slow and small 
changes in the elastic moduli of the material or the rod cross-sectional 
area. 

Solutions of a simplified non-linear longitudinal wave-propagation 
equation in a homogeneous rod were investigated earlier /l-3/, as was 
the solution of the Cauchy problem on solitary wave propagation in a rod 
of variable cross-section /4, 5/. 

1. Let us consider the evolution of a longitudinal displacement wave u=(u,v,w) given 
at the initial time 7 = 0 in an infinite non-linearly elastic rod of radius R under the 
assumption that starting with a certain section s=O the elastic moduli of the rod material 
can depend on the longitudinal coordinate s. We introduce a cylindrical system of Lagrange 
coordinates s7 r, E and we assume that the strain field is characterized by a Cauchy-Green 
finite-strain tensor, there is no plastic flow , the rod material behaviour is described within 
the framework of the non-linear model of a Murnaghan elastic medium /6/. We also assume that 
the wave motions under consideration are axisymmetric and the characteristic wavelengths are 
significantly greater than the radius of the rod. Then the radial displacement v and the 
linear component of the axial deformation U, are connected by the Love relationships 

v= --YTU,, U = U (s, r) (1.1) 
(v is Poisson's ratio). This enables the longitudinal motion in the system of dynamic 
equations of elasticity theory to be separated,and, integrating the free energy density over 
the cross-sectional area, enables us to obtain the one-dimensional Lagrangian 

L = nR= Wzpur2 + ‘llpv2R2~~s2 - ‘l,Eu.q2 - ‘/,~u~” - (1.2) 
‘18E+R2 (1 + Y)-~u,,‘~ 

fi = 3E + 21 (1 - 2~)~ + 6~29 + 4m (1 - Zv) (1 + v)1 

Here p is the density, E is Young's modulus, p is a non-linearity parameter, and l,m, n 
are third-order elastic moduli (Murnaghan moduli). The second component is the addition to 
the kinetic energy per unit length of the rod due to the inertia of the transverse motions. 
The fourth component describes the influence of the material non-linearity and refines the 
expression for the potential energy. The last component in (1.2) is the dispersion correction 
that takes account of the influence of transverse shear on the longitudinal motion. 

We select the scale of variation of the dimensional variables such that the non-linear 
and dispersion corrections are of the same order of magnitude and small compared with the rod 
kinetic and potential energies evaluated within the framework of linear longitudinal wave 
theory*.(*See: Samsonov, A.M. and Sokurinskaya E.V.: Longitudinal displacement solutions in 
an inhomogeneous non-linearly elastic rod. Prepint 983, Fis.-Tekh. Inst. Akad. Nauk SSSR, 
Fz;Ead, 1985). We reduce the variables of the problem to dimensionless form by the rule 

where F is the scale for the dimensional quantity f and E* is the scale for the 
dimensional quantity E. Then the small parameter 

6= = (RNIS)a = UBI(SE*) < 1 (1.3) 

can be introduced and the Euler equation for the Lagrangian (1.2) in dimensionless variables 
takes the form (the bars are omitted) 

&r = [J% + '/z 6'(6~,~ + Y%, - '/, Ev’(1 i_ NV)%,,,], (1.4) 

We will estimate the influence of a weak rod inhomogeneity described by the small 
parameter E < 1: E = E (es), p = t3 (es), v=v(E?s), on the evolution of the solitary non-linear 
wave of the longitudinal displacement velocity given at the initial time. We will seek the 
solution of the initial-boundary value problem consisting of (1.4) and conditions of the form 

u (s, 0) = u0 (s), u E C2 [R' x (0, T,ll 
ur (s, 0) = -24cEfJ-1a,2 ch-* Ba,ps, a, = const 
cz = E/p, p2 = 2 (1 + v (O))/(l + 2v (0)) 

(1.5) 

a’u d’u 
s--tcu, I_ -0, 

8s" 
-L-o; k=O,1,2,3 
dsk 

We assume that the perturbations oftheTfundamenta1 wave operator in (1.4), due to changes 
intherod properties, do not exceed the dispersion and non-linear corrections proportional to 
&a, i.e., we give the relationship between the small parameters of the problem in the form 
a= 0(6*), e=6S (6+ 0). After insertion of a new unknown function _'p= -_B&(l2cE) and new 
independent variables (the prime denotes the derivative with respect to ‘ES) 

t = 26=ps, x = 2p (s - CT) + Pp=s=E’lE + PpV (El/E)’ 
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this enables us to obtain the following problem from (l-4)-(1.5): 

'cl -:L hpcp, Jo q’rxr -I- 6 (Y.qr $- ‘E (7/zy - x)) = 0 (62) (I .fi) 
y = v (Q) = ‘i,B’IE, x = x (st) = B’/\3 
cp (.r, t) It cyi = “a,2 CllP ccox 11.7) 
Ix /+m, ‘1 , ‘{‘1, cpx. - 0 (1.8) 

Therefore, the original initial-boundary value problem (1.4)-(1.5) is reduced to a 
problem with a moving boundary for the perturbed Korteweg-de Vries (Kdv) equation written for 
the function cp proportional to the longitudinal velocity of displacement. We note that (1.6) 
does not describe the evolution of a localized wave (the second condition of (1.5)) in a 
radically inhomogeneous rod for E = 0 (62) when the MV evolution operator will already not 
be fundamental; this problem requires separate consideration. 

2. To construct the asymptotic solution of the problem we use an extension of the 
perturbation method /8/. We introduce new variables 8, 7': 0, = 1, et = -$’ (T), T = at, where 
q is a function to be determined and we will seek the solution of the problem in the form 
of a formal expansion in powers of the small parameter S: 

cp (0, T) = '~0 (0, 0 f 6~1 (e, T) + 0 p), 6 -+o 
The solution of the Cauchy problem in the zeroth approximation is the soliton 

‘~0 (e, T) = 2aZ ch-2 a (e - e,) 

as (T) = q2(T) - y 5 r?(z) dz, e. = 0, (T) 
0 

(2.1) 

where the amplitude a2is determined from the condition of no secular terms, i.e., the ortho- 
gonalityof I#' and the components 0 (6)in (1.6) 

a2(T)= a,2/3'/a (T) Ee2(T) (2.2) 

After some reduction the equations of the higher approximations are reduced to linear 
inhomogeneous equations for the associated Legendre functions. The solution 'pl has the form 

The asymptotic solution of the first approximation problem is found by determining e0 (T) 
in the form (see the paper cited in the previous footnote) 

The solution cp 
fundamental soliton 

‘p’ = x (1 - th $) + @,’ (9, T) ch+ 11, 

@1---[(l-$th$)(3- -&)+@+Qth$)] + 

(1 - g th$)('/, ~0, + 4~%* - a”)) + G(T) th 11, 
9 = a (e - e,), x = (II6 x - l/g W 

(2.3) 

=@-/-6@ damps out as e-+oo, but has a non-zero limit behind the 

h (T) =,"m (cpo + I%$)= 2x6 (2.4) -cc 

i.e., a change in the elastic moduli results in the formation of an almost flat plateau with 
height h- 6 behind the main impulse and a propagation velocity considerably less than the 
soliton velocity. 

The quasistationary solution r+S'+ 6$holds for 18 1 <h-‘/z, A solution uniformly suitable 
in 0 is constructed by merging asymptotic expansions and consists of three parts: before the 
main impulse in the domain EI>8+* an exponentially damped forerunner propagates, later a 
quasistationary solution 'p" + 6m' of soliton type containing the main impulse with slowly 
varying parameters andthe almost flat plateau, that goes over into an exponentially damped 
function (the "tail" of the soliton /9/) for 8( --6-'/a. 

3. Let us discuss the properties of the solution found. A change in the amplitude 
A (T) = 2aZ of the main impulse in an inhomogeneous non-linearly elastic rod is described 
by the relationship (2.2) and differs from the relationship for the amplitude obtained in /lo/ 
in that it contains a dependence of A on the non-linearity parameter Q. 

It is seen from (2.2) that a relationship exists between the second- and third-order 
moduli p2E3 = const, fi = p(T), E = E(T), for which the amplitude A of the initial impulse and 
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the “energy” 

will remain constant while the sign of h agrees with the sign of E'. For p4Em3 = COnst a 
solution of the adiabatic approximation type /ll/ of the theory of asymptotic integration of 
the KdV equation is obtained: the plateau behind the soliton is not formed in this case, the 
impulse retains its shape, but the amplitude varies slowly. 

If only the geometric non-linearity due to finite strains is taken into account, then 
for E’>O (the material becomes stiffer) the height of the plateau is h>O and, con- 
sequently, the plateau behind the soliton corresponds to an additional compression strain wave 
relative to the impulse, the amplitude of the initial impulse diminishes here and the soliton 
loses "energy". On the other hand if the material becomes softer, then E'< 0 and the 
plateau with h<O corresponds to tension strain. The amplitude A and energy i, of the 
impulse here grow, which can result in large local stresses, bring the material into the 
domain of irreversible strains, and therefore, reduce the strength of the rod radically. 

By restoringthe sequence of the change of variables, explicit formulas can be obtained 
for the characteristics of the state of stress and strain of an inhomogeneous rod during 
solitary longitudinal displacement velocity wave propagation (see the footnote citation). 
We will confine ourselves to presenting estimates for the wave amplitudes of longitudinaldis- 
placement A,,the radial displacement A, according to (1.1) , the longitudinal strain A,,, and 
the axial stress A, 

A,- vGRfi-"8 (s), A, - vPRfY * (s) E-’ (s) 

A US - PBS/, (s) E-’ (s), A, - PfW (s) 

The longitudinal displacement u is found by integrating the solution ut m'p (6, T); the 
zone where u(x, t)f 0 is a domain expanding in time that is bounded by two functions of the 
form u-thx and u - th (x -VVt);we note that the velocity V exceeds the velocity of the 
linear waves c 

(the relative increase in the velocity (V - C)/C for steel is l-2%, but for elastic 
(plexiglass, polystyrene) is E-12%). Depending on the sign of E’ the influence of 
inhomogeneity can result in an increase or decrease in the velocity V; for E’< 0 

satisfaction ofthecondition 

(3.1) 

polymers 
the 
and 

the influence of the non-linear and inhomogeneous properties of the material obviously cancel 
mutually, and the wave velocity is constant although the amplitude and energy characteristics 
of the soliton will vary. 

‘pz 
I 

a 

Fig.1 Fig.2 

4. The non-stationary solutions of the Cauchy problem for (1.6) with initial conditions 
different from (1.7) were investigated numerically. The asymptotic and numerical solutions 
oftheproblemwithsolitoninitial condition (1.7) were compared to estimate the accuracy of 
the numerical procedure. Moreover, such a comparison enables us to assess the accuracy of the 
asymptotic first-order solution of the KdV equation with a perturbation. A modification of 
the two-layer implicit scheme /12/ with order of approximation (AS, At) was used in the 
numerical integration. The numerical and analytic solutions were compared by confirming 
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Fig.3 

satisfaction of the first two conservation laws for the 
perturbed KdV equation and calculation of the impluse 
amplitude and the plateau height behind it. The results of 
numerical integration of the Cauchy problem on solitary wave 
propagation in a rod of variable section (the analytic 
solution is obtained in /4, 5/) and in an inhomogeneous rod 
showed satisfactory agreement between the asymptotic solution 

'( ‘yo i- 6lp’ and the numerical solution. 
Fig.1 shows the soliton evolution in a rod for which 

the elastic moduli of the material varied according to the 
law 

E (t) = l/g + (1 - '/# - '/z (1 - '/#, 0 < t d 4 

E (t) = 1. t>4; b(f)- E(t) 

Along the t axis we show graphs of the function E(t). For t<z the function E(t) decreases, 
which results in a growth in the characteristics A and I, of the numerical solution of the 
problem and the formation of a plateau with h<O. For 2<t<4 the function E(t) increases 
up to the initial value E(O)= 1, the amplitude A and energy 1, fall to the initial values, 
and a plateau with h>O forms behind the impulse. The dashed lines denote the soliton 
location that it would occupy when propagating in a homogeneous rod (E(l)= 1); it is seen that 
in this case the soliton would traverse a smaller distance, therefore, the magnitude of the 
shear might be a measure of the inhomogeneity of the rod material. 

Problems on the collision of two solitons in an inhomogeneous rod were solved numerically 
for p(t)= E(t) (Fig.2) and in a rod of variable section. It turns out that even in the 
presence of perturbations the impulses remain unchanged after interaction, i.e., possess the 
fundamental property of the localized solutions of the unperturbed KdV equation- the soliton 
property. 

Numerical experiments on soliton collisions in a rod showed the strong influence of 
inhomogeneity on the magnitude of the wave shift in space with respect to the location each 
would occupy.in the absence of the other. If E’>O this shift increases compared with the 
same quantity in the homogeneous case, while the system of two interacting solitons accelerates. 
For E’ < 0 the phase shift decreases while the system of impulses is retarded; therefore, 
a change in the phase shift because of inhomogeneity can be considered the sole "memory" 
of a collision under conditions of varying parameters of the rod material. 

Analysis of the results obtained in a numerical integration of the KdV equation with a 
perturbation enables us to describe the influence of the rod inhomogeneity on the soliton 
formation process from an arbitrary initial impulse. The leading front of the impulse first 
becomes gradually more steep, then the original wave separates into several impulses with 
different amplitudes and velocities. These impulses diverge and acquire the characteristic 
shape of solitons, where the influence of the inhomogeneity can result in both magnification 
of the impulses and their gradual damping. In particular, for magnification the maximum of 
the soliton amplitudes can exceed the amplitude of the initial impulse by a factor of 2-4. 

Fig.3 shows the process of formation of two solitary waves from an initial perturbation 
of the harmonic-function type in an inhomogeneous rod; the elastic moduli are connected by 
the relationship BeFm3= Con% E'<O. The impulses are in the order of increasing amplitude 
where the property of conservation of the amplitude and energy of the solution for the 
mentioned connection between 8 and E, found for a single soliton, also turns out to be 
satisfied, in such a system: when the formation process is completed the amplitudes of the 
two solitons being formed and the energy of the solution remain constant. 

The authors are grateful to N.V. Zvolinskii, S.V. Nesterov and the participants in the 
seminars held to discuss the results of the research, 
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ON OPTIMAL PLASTIC ANISOTROPY* 

N.V. BANICHUK and V.V. KOBELEV 

An approach is developed for the optimal design of a structure, based on 
optimization of the anisotropic plastic properties of materials. Problems 
of maximizing the ultimate plastic rupture load as a result of optimal 
orientation of the plastic anisotropy axes in the structure elements are 
formulated. Necessary conditions are presented for optimality in the 
three-dimensional problem of the theory of ultimate plastic equilibrium. 
Cases of the torsion and bending of plastic rods are considered. The 
bilateral achievable estimates of the ultimate loads are obtained. It 
is noted that the conditions for achieving the upper and lower bounds 
agree with the necessary optimality conditions. It is proved that the 
maximum ultimate load is realized in the case when the direction with 
the greatest yield point of the material agrees with the direction given 
by the tangential stress vector at the time of exhaustion of the carrying 
capacity. 

1. Formulation of the problem. Optimality conditions. We consider a deformable 
body that occupies a domain Q with boundary p. The body material is considered to be ideally 
elastic-plastic. The flow state occurs at a certain point if the flow condition 

&? (Oij9 k, < O (I.11 

is satisfied with the equality sign (g = 0). If g< 0 then the material behaves elastically. 
Here k is the plasticity constant, g is a given function , and cij are stress tensor components 
The equation g(cij, k) =0 in the stress space yields a family of convex surfaces enclosing 
the origin. It is assumed in the problems studied below that flow domains occur when loads 
are applied to the body. The very appearance of flow domains is considered allowable, however, 
it is required that the plastic strains should not result in exhaustion of the carrying 
capacity and to body rupture. Exhaustion of the carrying capacity is understood to be un- 
bounded growth of strains under constant loads (/l, 2/). 

To estimate the carrying capacity , the theorem on ultimate equilibrium is used, according 
to which the body sustains applied loads if a safe statically possible field of stresses uij 

exists, i.e., a stress distribution satisfying the equilibrium equations and boundary con- 
ditions 

(1.2) 
and such that 

g (aij* k, < O (1.3) 

Here niare components of the unit external normal vector to the body surface 
and p. is the part ofthebody surface on which the loads T, are given. On the rest b";"~~')' 
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